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•• 4,000 Deaths/Year 4,000 Deaths/Year 
in US Home Fires in US Home Fires -- highest of highest of 
Developed CountriesDeveloped Countries

Fire Statistics: National Fire Protection Assoc. 1996

3 minutes to flashover !

NIST Bunk bed Study: www.fire.nist.gov

••37 % from Upholstered 37 % from Upholstered 
Furniture Mattress and BeddingFurniture Mattress and Bedding



General Flame Retardant General Flame Retardant 
Approaches for PolymersApproaches for Polymers

I- Gas Phase Flame Retardants
- Reduce Heat of Combustion (∆∆∆∆Hc) by scavenging reactive free radicals, 

resulting in incomplete combustion.
- Inherent Drawbacks: Negative Public Perception! 

II- Endothermic Flame Retardants
- Function in Gas Phase and Condensed Phase
- Via endothermic release of H2O, polymer cooled and gas phase diluted.
- Inherent Drawback:  High loadings (30-50%) degrade mechanical 

properties.

III- Char Forming Flame Retardants
- Operate in Condensed Phase
- Provides thermal insulation for underlying polymer and a mass 
transport barrier, preventing or delaying escape of fuel into the gas 
phase.
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PPPP--clay clay NanocompositeNanocomposite: TEM: TEM

Gilman, et al, Chemistry of Materials; 2000; 12; 1866-1873



Cone CalorimeterCone Calorimeter
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PPPP--clay clay NanocompositeNanocomposite: Cone Calorimetry: Cone Calorimetry



Year One Annual Report:Gilman, et al, Year One Annual Report:Gilman, et al, NISTIR 6531NISTIR 6531

~1997 ~1997 -- 20002000



Polymer -Clay Nanocomposite

Combustion

TEM

TEM

Reduced Flammability
with
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Clay reinforced Carbonaceous CharClay reinforced Carbonaceous Char

Combustion

Gilman et al, SAMPE Journal, 1997





Nano-dispersion

Ammonium degradation

Polymer degradation
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ImidazoliumImidazolium-- SaltsSalts
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PETPET/DMHDIM/DMHDIM--MMT NanocompositeMMT Nanocomposite

Processing Temp
290 oC



Parameter Space (~ 10Parameter Space (~ 1066 Experiments) for Polymer Experiments) for Polymer 
NanocompositesNanocomposites
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Cumulative Earnings
"Generic" Plastics Development Program

($50)

$0

$50

$100

$150

$200

0 5 10 15 20 25
Year

Combinatorial

Traditional

J. Busch, IBIS corp.



Sensing Film

Thermometer Plate

SiO2 Base Layer
Heater

Contact
Pads

Coat sensing film with 
test material

Microhotplates

Correlate changes in 
power demand needed to 
maintain the specified 
heating rate with mass 
loss from degrading 
polymer



MicrohotplateMicrohotplate Sample PreparationSample Preparation



Microhotplate Flammability ScreeningMicrohotplate Flammability Screening
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Microhotplate Sample Preparation

According to MicroFab Technologies, drop volumes as 
low as 20 pL can be dispensed.



MicrohotplateMicrohotplate Array (17 X 20)Array (17 X 20)

High-throughput flammability screening on small (∼ 1 µg) samples



Extrusion of  Gradient SamplesExtrusion of  Gradient Samples

InIn--line sensors: line sensors: 
light scattering, FTIR, optical, NMR; or off light scattering, FTIR, optical, NMR; or off 
line High Throughput, TGA, Xline High Throughput, TGA, X--Ray Ray 
Absorption SystemAbsorption System

Extruder

Gravimetric feedersGravimetric feeders

Extruded sample with FR gradients



Horizontal Ignition and Horizontal Ignition and 
Flammability TestFlammability Test
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Flux Gradient in HIFTFlux Gradient in HIFT
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Horizontal Ignition and Horizontal Ignition and 
Flammability TestFlammability Test

Low
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Gradient Flux TestGradient Flux Test
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HIFTHIFT



HIFTHIFT
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High Throughput TestHigh Throughput Test
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High Throughput TestHigh Throughput Test
Progression of Flame Front
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High Throughput TestHigh Throughput Test
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Conventional vs High ThroughputConventional vs High Throughput
Flammability MeasurementsFlammability Measurements

QualitativeQualitative22--33Poor ( 50%)Poor ( 50%)UL 94 VUL 94 V

QuantitativeQuantitative100’s100’sExcellent (5%)Excellent (5%)HIFT using HIFT using 
gradient  samplesgradient  samples

MultiMulti-- parameterparameter
Highly Highly 

QuantitativeQuantitative

22--33Excellent (5%)Excellent (5%)ConeCone

Data QualityData QualityDataData--sets/daysets/dayRepeatibilityRepeatibility
(+/(+/--))

MethodMethod
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ConclusionsConclusions

By combiningBy combining nanotechnologynanotechnology with highwith high--
throughput experimentation, we can throughput experimentation, we can 
maximize the effect of additives and maximize the effect of additives and 
thereby thereby provide industry with a powerful provide industry with a powerful 
tool for the development of a new tool for the development of a new 
generation of high performance, low generation of high performance, low 
flammability materials.flammability materials.



Team Project
will work with project teams, consisting of 3 or more 
companies, to develop generic tools for high-throughput 
formulation, characterization, and flammability 
performance screening of materials and fire retardant 
systems. 

Combinatorial Methods Center at NIST

New Consortium:New Consortium:
HighHigh--Throughput Methods for Flammability Throughput Methods for Flammability 
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